资源类型

期刊论文 85

会议视频 3

年份

2024 1

2023 20

2022 8

2021 8

2020 10

2019 13

2018 6

2017 3

2016 1

2015 3

2013 1

2012 2

2009 1

2008 1

2007 2

2006 1

2005 1

2003 1

2002 1

展开 ︾

关键词

电动汽车 4

锂离子电池 4

2023全球十大工程成就 2

动力电池 2

快速充电 2

电动汽车充电 2

锌空气电池 2

ZEBRA 电池 1

一体化停车棚 1

三相界面 1

亲钠性铋基材料 1

优化 1

储能系统 1

催化磷化 1

充/换电站 1

充电模式;充电时长;随机森林;长短期记忆网络(LSTM);简化粒子群优化算法(SPSO) 1

充电站部署 1

光伏发电 1

全气候新能源汽车 1

展开 ︾

检索范围:

排序: 展示方式:

A brief review on key technologies in the battery management system of electric vehicles

Kailong LIU, Kang LI, Qiao PENG, Cheng ZHANG

《机械工程前沿(英文)》 2019年 第14卷 第1期   页码 47-64 doi: 10.1007/s11465-018-0516-8

摘要: Batteries have been widely applied in many high-power applications, such as electric vehicles (EVs) and hybrid electric vehicles, where a suitable battery management system (BMS) is vital in ensuring safe and reliable operation of batteries. This paper aims to give a brief review on several key technologies of BMS, including battery modelling, state estimation and battery charging. First, popular battery types used in EVs are surveyed, followed by the introduction of key technologies used in BMS. Various battery models, including the electric model, thermal model and coupled electro-thermal model are reviewed. Then, battery state estimations for the state of charge, state of health and internal temperature are comprehensively surveyed. Finally, several key and traditional battery charging approaches with associated optimization methods are discussed.

关键词: battery management system     battery modelling     battery state estimation     battery charging    

Sizing of hybrid PMSG-PV system for battery charging of electric vehicles

M. M. RAJAN SINGARAVEL,S. ARUL DANIEL

《能源前沿(英文)》 2015年 第9卷 第1期   页码 68-74 doi: 10.1007/s11708-015-0349-7

摘要: The number of electric vehicles are increasing in the society as they are considered as zero emission vehicles and also because conventional fuels are becoming expensive. Additional electrical power should be produced to meet the energy requirement of this increase in electric vehicle population. To use the existing grid infrastructure without any failure, installing distributed generator at secondary distribution network is essential. In this work, sizing of wind-driven permanent magnet synchronous generator—photovoltaic hybrid distributed generating system has been attempted to meet the energy demand of electric vehicles of a particular residential area. Different feasible combinations for wind generator capacity and photovoltaic capacity are obtained to satisfy the additional energy requirement. Results are analyzed based on energy, financial payback periods and daily power profile of the hybrid system. Based on this analysis, the sizes of wind generator and photovoltaic array have been chosen to meet the energy demand of electric vehicles of that particular residential locality.

关键词: electric vehicles     hybrid PMSG-PV system     smart grid    

analysis of series/parallel and dual side LCC compensation topologies of inductive power transfer for EV batterycharging system

P. Srinivasa Rao NAYAK, Dharavath KISHAN

《能源前沿(英文)》 2020年 第14卷 第1期   页码 166-179 doi: 10.1007/s11708-018-0549-z

摘要: In an inductive battery charging system, for better power transfer capability and attaining required power level, compensation is necessary. This paper analyzes series/parallel (S/P) and dual side inductor-capacitor-capacitor (LCC) compensation topologies for inductive power transfer of electric vehicle (EV) battery charging system. The design and modeling steps of inductive power transfer for electric vehicle battery charging system are presented. Besides, the equivalent electrical circuits are used to describe the circuit compensation topologies. The results convey that the efficiency of dual side LCC compensation is higher than that of S/P compensation at variable mutual inductance (misalignment).

关键词: series/parallel compensation     electric vehicle (EV)     dual side LCC compensation     inductive power transfer    

Cumulant-based correlated probabilistic load flow considering photovoltaic generation and electric vehicle charging

Nitesh Ganesh BHAT, B. Rajanarayan PRUSTY, Debashisha JENA

《能源前沿(英文)》 2017年 第11卷 第2期   页码 184-196 doi: 10.1007/s11708-017-0465-7

摘要: This paper applies a cumulant-based analytical method for probabilistic load flow (PLF) assessment in transmission and distribution systems. The uncertainties pertaining to photovoltaic generations and aggregate bus load powers are probabilistically modeled in the case of transmission systems. In the case of distribution systems, the uncertainties pertaining to plug-in hybrid electric vehicle and battery electric vehicle charging demands in residential community as well as charging stations are probabilistically modeled. The probability distributions of the result variables (bus voltages and branch power flows) pertaining to these inputs are accurately established. The multiple input correlation cases are incorporated. Simultaneously, the performance of the proposed method is demonstrated on a modified Ward-Hale 6-bus system and an IEEE 14-bus transmission system as well as on a modified IEEE 69-bus radial and an IEEE 33-bus mesh distribution system. The results of the proposed method are compared with that of Monte-Carlo simulation.

关键词: battery electric vehicle     extended cumulant method     photovoltaic generation     plug-in hybrid electric vehicle     probabilistic load flow    

基于液冷的电池热管理系统快充-冷却耦合规划方法 Article

陈思琦, 包能胜, Akhil Garg, 彭雄斌, 高亮

《工程(英文)》 2021年 第7卷 第8期   页码 1165-1176 doi: 10.1016/j.eng.2020.06.016

摘要:

高效的快速充电技术对电动汽车行驶里程的拓展十分重要。然而,锂离子电池在大电流充电倍率下会大量产热。为解决这一问题,急需一种高效的快速充电-冷却规划方法。此次研究针对锂离子电池组的快速充电过程,设计了一种配有微流道的基于液冷的热管理系统。基于81组实验数据,提出了一种基于神经网络的回归模型,由三个考虑以下输出的子模型构成:最高温度、温度标准差及功耗。训练后的子模型均呈现出较高的测试准确性(99.353%、97.332%和98.381%)。此回归模型用于预测一个设计方案全集的三个输出参数,此全集由不同充电阶段的充电电流倍率[0.5C、1C、1.5C、2C和2.5C(1C = 5 A)],以及不同的冷却液流量(0.0006 kg·s-1、0.0012 kg·s-1和0.0018 kg·s-1)组成。最终从预测得到的设计方案全集中筛选出一组最优过程方案,并经实验得到了验证。结果表明在功耗低于0.02 J的情况下电池组荷电状态(SOC)值经15 min充电后增长了0.5。同时最高温度和温度标准差可分别控制在33.35 ℃和0.8 ℃以内。本文所提出的方法可供电动汽车行业在实际快速充电工况下使用。此外,可以基于实验数据预测最佳快速充电-冷却计划,从而显著提高充电过程设计的效率,并控制冷却过程中的能耗。

关键词: 锂离子电池组     快速充电     神经网络回归     规划     荷电状态     功耗    

A modified pulse charging method for lithium-ion batteries by considering stress evolution, charging

Yanfei ZHAO, Bo LU, Yicheng SONG, Junqian ZHANG

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 294-302 doi: 10.1007/s11709-018-0460-z

摘要: The stress evolution, total charging time and capacity utilization of pulse charging (PC) method are investigated in this paper. It is found that compared to the conventional constant current (CC) charging method, the PC method can accelerate the charging process but will inevitably cause an increase in stress and a decrease in capacity. The charging speed for PC method can be estimated by the mean current. By introducing stress control, a modified PC method called the PCCC method, which starts with a PC operation followed by a CC operation, is proposed. The PCCC method not only can accelerate charging process but also can avoid the stress raising and capacity loss occurring in the PC method. Furthermore, the optimal pulsed current density and switch time in the PCCC method is also discussed.

关键词: fast charging method     pulse charging     stress evolution     charging time     capacity utilization    

Formation of free-charging industry alliance for new energy vehicles

Zhengdong YANG, Feng JIN, Shiyu DU, Jingwen LI

《工程管理前沿(英文)》 2018年 第5卷 第2期   页码 268-275 doi: 10.15302/J-FEM-2018058

摘要: At present, the further development of new energy vehicles industry is hindered by limited consumer’s participation or capital investment. Therefore, a new multilateral model of cross-industry alliance needs to arise. The advanced charging technology of Internet-distributed mobile energy can link up with many market participants closely and form an effective and multilateral win-win cross-industry alliance. This new industry alliance can realize unexpected multiple goals, for example, (1) consumers who have purchased new energy vehicles can avail free charging; (2) potential vehicle buyers can be encouraged to use new energy vehicles; (3) the new energy vehicle manufacturers can expand their production scale; (4) the new energy vehicles sellers (4S shop) can expand their sales volume; (5) large shopping malls can attain more income; (6) financial institutions can absorb more deposits; (7) governments can further promote low-carbon traffic. This article analyzes the cross-industry alliance and its forming mechanism.

关键词: industry alliance     mobile energy     new energy vehicles     free charging     low carbon    

A framework for stochastic estimation of electric vehicle charging behavior for risk assessment of distribution

Salman HABIB, Muhammad Mansoor KHAN, Farukh ABBAS, Muhammad NUMAN, Yaqoob ALI, Houjun TANG, Xuhui YAN

《能源前沿(英文)》 2020年 第14卷 第2期   页码 298-317 doi: 10.1007/s11708-019-0648-5

摘要: Power systems are being transformed to enhance the sustainability. This paper contributes to the knowledge regarding the operational process of future power networks by developing a realistic and stochastic charging model of electric vehicles (EVs).Large-scale integration of EVs into residential distribution networks (RDNs) is an evolving issue of paramount significance for utility operators. Unbalanced voltages prevent effective and reliable operation of RDNs. Diversified EV loads require a stochastic approach to predict EVs charging demand, consequently, a probabilistic model is developed to account several realistic aspects comprising charging time, battery capacity, driving mileage, state-of-charge, traveling frequency, charging power, and time-of-use mechanism under peak and off-peak charging strategies. An attempt is made to examine risks associated with RDNs by applying a stochastic model of EVs charging pattern. The output of EV stochastic model obtained from Monte-Carlo simulations is utilized to evaluate the power quality parameters of RDNs. The equipment capability of RDNs must be evaluated to determine the potential overloads. Performance specifications of RDNs including voltage unbalance factor, voltage behavior, domestic transformer limits and feeder losses are assessed in context to EV charging scenarios with various charging power levels at different penetration levels. Moreover, the impact assessment of EVs on RDNs is found to majorly rely on the type and location of a power network.

关键词: electric vehicles (EVs)     residential distribution networks (RDNs)     voltage unbalance factor (VUF)     state-of charge (SOC)     time-of-use (TOU)    

全生命周期成本分析框架下的电动公交充电器部署和车队管理 Article

曾子凌, 王帅安, 曲小波

《工程(英文)》 2023年 第21卷 第2期   页码 45-60 doi: 10.1016/j.eng.2022.07.019

摘要:

尽管城市交通电气化快速发展,但电池电动公交车(EB)车队的系统规划和管理进展却较为落后。本研究首先综述了影响电池电动系统的基本问题,包括充电站部署、电池尺寸、公交车调度和生命周期分析。目前,EB系统的规划和运行是按顺序进行的,公交车调度是在公交车队和基础设施部署完毕后进行的,这导致了资源利用率低和资源浪费。对此,本文提出了混合整数规划模型整合充电站部署和公交车队管理,以尽可能低的生命周期成本(LCC),包括所有权、运营、维护和排放费用,缩小最佳规划与运营之间的差距。引入了分支定价算法,以减少寻找最佳解决方案所需的计算工作量。本研究还通过分析真实案
例,与目前的公交运营策略和充电站布局相比,一条公交线路的LCC优化后可显著降低30.4%。提出的方法不仅可以进行生命周期分析,还可以为交通部门和运营商提供可靠的充电桩部署及单线和多线的公交调度计划,这两者都是未来具有高电气化普及率的交通系统中决策支持的关键要求,此研究也有助于推动可持续交通的发展。

关键词: 电动公交车     充电站部署     电池尺寸     公交车调度     生命周期分析    

一种基于充电模式识别的电动汽车充电时间预测方法 Research Article

李春喜1,傅莹颖1,崔向科2,葛泉波3,4,5

《信息与电子工程前沿(英文)》 2023年 第24卷 第2期   页码 299-313 doi: 10.1631/FITEE.2200212

摘要: 电动汽车动力电池过度充电容易导致电池加速老化和严重的安全事故。因此,准确预测车辆充电时间对充电安全防护意义重大。由于电池组结构复杂,充电方式多样,传统方法因缺乏充电模式识别而预测精度不高。本文应用数据驱动和机器学习理论,提出一种新的基于充电模式识别的充电时间预测方法。首先,基于动态加权密度峰值聚类(DWDPC)和随机森林融合的智能算法对车辆充电模式进行分类;然后,采用改进的简化粒子群优化算法(ISPSO)和强跟踪滤波器(STF),对LSTM神经网络进行优化,构建了一种高性能的充电时间预测方法;最后,通过实际工程数据对所提出的ISPSO-LSTM-STF方法进行了验证。实验结果表明,该方法能够有效区分充电模式,提高了充电时间预测精度,具有实际工程意义。

关键词: 充电模式;充电时长;随机森林;长短期记忆网络(LSTM);简化粒子群优化算法(SPSO)    

Mapping the trends and prospects of battery cathode materials based on patent landscape

《能源前沿(英文)》   页码 822-832 doi: 10.1007/s11708-023-0900-x

摘要: Advancing portable electronics and electric vehicles is heavily dependent on the cutting-edge lithium-ion (Li-ion) battery technology, which is closely linked to the properties of cathode materials. Identifying trends and prospects of cathode materials based on patent analysis is considered a kernel to optimize and refine battery related markets. In this paper, a patent analysis is performed on 6 popular cathode materials by comprehensively considering performance comparison, development trend, annual installed capacity, technology life cycle, and distribution among regions and patent assignees. In the technology life cycle, the cathode materials majorly used in electric vehicle have entered maturity stage, while the lithium cobalt oxide (LCO) cathode that is widely used in portable electronics is still in the growth stage. In global patent distributions, China holds more than 50% of total patents. In the top 10 patent assignees of 6 cathode materials, 2 institutes are from China with the rest being Japan (6) and Republic of Korea (2), indicating that the technology of cathode materials in China is relatively scattered while cathode research is highly concentrated in Japan and Republic of Korea. Moreover, the patent distribution has to consider practical issues as well as the impacts of core patents. For example, the high cost discourages the intention of applying international patents. This paper is expected to stimulate battery research, understand technical layout of various countries, and probably forecast innovative technology breakthroughs.

关键词: patent analysis     cathode     batteries     technology life cycle    

Powertrain control of a solar photovoltaic-battery powered hybrid electric vehicle

P. PADMAGIRISAN, V. SANKARANARAYANAN

《能源前沿(英文)》 2019年 第13卷 第2期   页码 296-306 doi: 10.1007/s11708-018-0605-8

摘要: This paper proposes a powertrain controller for a solar photovoltaic battery powered hybrid electric vehicle (HEV). The main objective of the proposed controller is to ensure better battery management, load regulation, and maximum power extraction whenever possible from the photovoltaic panels. The powertrain controller consists of two levels of controllers named lower level controllers and a high-level control algorithm. The lower level controllers are designed to perform individual tasks such as maximum power point tracking, battery charging, and load regulation. The perturb and observe based maximum power point tracking algorithm is used for extracting maximum power from solar photovoltaic panels while the battery charging controller is designed using a PI controller. A high-level control algorithm is then designed to switch between the lower level controllers based on different operating conditions such as high state of charge, low state of charge, maximum battery current, and heavy load by respecting the constraints formulated. The developed algorithm is evaluated using theoretical simulation and experimental studies. The simulation and experimental results are presented to validate the proposed technique.

关键词: battery management system     hybrid electric vehicles (HEVs)     maximum power point tracking (MPPT)     solar photovoltaic    

Performance of iron-air battery with iron nanoparticle-encapsulated C–N composite electrode

《能源前沿(英文)》 doi: 10.1007/s11708-023-0913-5

摘要: Highly efficient and stable iron electrodes are of great significant to the development of iron-air battery (IAB). In this paper, iron nanoparticle-encapsulated C–N composite (NanoFe@CN) was synthesized by pyrolysis using polyaniline as the C–N source. Electrochemical performance of the NanoFe@CN in different electrolytes (alkaline, neutral, and quasi-neutral) was investigated via cyclic voltammetry (CV). The IAB was assembled with NanoFe@CN as the anode and IrO2 + Pt/C as the cathode. The effects of different discharging/charging current densities and electrolytes on the battery performance were also studied. Neutral K2SO4 electrolyte can effectively suppress the passivation of iron electrode, and the battery showed a good cycling stability during 180 charging/discharging cycles. Compared to the pure nano-iron (NanoFe) battery, the NanoFe@CN battery has a more stable cycling stability either in KOH or NH4Cl + KCl electrolyte.

关键词: energy storage and conversion     metallic composites     nanocomposites     iron-air battery     iron anode    

储能钠电池技术发展的挑战与思考

胡英瑛,吴相伟,温兆银,侯明,衣宝廉

《中国工程科学》 2021年 第23卷 第5期   页码 94-102 doi: 10.15302/J-SSCAE-2021.05.013

摘要:

储能安全是国家能源安全的重要方面,是国民经济发展的重要支撑,对国家安全、可持续发展以及社会稳定具有重要的影响。钠电池技术兼具高功率密度、高能量密度、低成本以及高安全性等优势,成为一类重要的大规模储能技术。本文重点介绍了包括钠硫电池和钠– 金属氯化物电池等在内的典型钠电池体系的技术优势和应用场景,并通过分析钠电池技术在国内外的发展与应用现状提出了我国钠电池技术可能的发展方向并给出了相应的建议,包括支持储能钠电池相关材料科学的研究和工程化技术攻关、推动储能钠电池相关上下游产业的聚集发展、建立健全储能钠电池的相关标准和性能评价平台等措施,以提升我国储能钠电池技术的研发水平和技术成熟度,为我国的能源安全建设带来新的可靠选择。

关键词: 电化学储能     钠电池     钠硫电池     钠– 金属氯化物电池     ZEBRA 电池    

电动自行车用锌空气动力电池

朱梅,徐献芝,杨基明

《中国工程科学》 2006年 第8卷 第11期   页码 99-102

摘要:

介绍了可用于替代铅酸电池的一种锌空气动力电池,在技术上实现了大容量,小体积,结构合理。主要的突破体现在空气电极和锌电极的特殊设计,以及单电池的合理组装。比较了该动力电池与同类产品的技术指标。

关键词: 电动自行车     铅酸电池     锌空气电池     动力电池     容量    

标题 作者 时间 类型 操作

A brief review on key technologies in the battery management system of electric vehicles

Kailong LIU, Kang LI, Qiao PENG, Cheng ZHANG

期刊论文

Sizing of hybrid PMSG-PV system for battery charging of electric vehicles

M. M. RAJAN SINGARAVEL,S. ARUL DANIEL

期刊论文

analysis of series/parallel and dual side LCC compensation topologies of inductive power transfer for EV batterycharging system

P. Srinivasa Rao NAYAK, Dharavath KISHAN

期刊论文

Cumulant-based correlated probabilistic load flow considering photovoltaic generation and electric vehicle charging

Nitesh Ganesh BHAT, B. Rajanarayan PRUSTY, Debashisha JENA

期刊论文

基于液冷的电池热管理系统快充-冷却耦合规划方法

陈思琦, 包能胜, Akhil Garg, 彭雄斌, 高亮

期刊论文

A modified pulse charging method for lithium-ion batteries by considering stress evolution, charging

Yanfei ZHAO, Bo LU, Yicheng SONG, Junqian ZHANG

期刊论文

Formation of free-charging industry alliance for new energy vehicles

Zhengdong YANG, Feng JIN, Shiyu DU, Jingwen LI

期刊论文

A framework for stochastic estimation of electric vehicle charging behavior for risk assessment of distribution

Salman HABIB, Muhammad Mansoor KHAN, Farukh ABBAS, Muhammad NUMAN, Yaqoob ALI, Houjun TANG, Xuhui YAN

期刊论文

全生命周期成本分析框架下的电动公交充电器部署和车队管理

曾子凌, 王帅安, 曲小波

期刊论文

一种基于充电模式识别的电动汽车充电时间预测方法

李春喜1,傅莹颖1,崔向科2,葛泉波3,4,5

期刊论文

Mapping the trends and prospects of battery cathode materials based on patent landscape

期刊论文

Powertrain control of a solar photovoltaic-battery powered hybrid electric vehicle

P. PADMAGIRISAN, V. SANKARANARAYANAN

期刊论文

Performance of iron-air battery with iron nanoparticle-encapsulated C–N composite electrode

期刊论文

储能钠电池技术发展的挑战与思考

胡英瑛,吴相伟,温兆银,侯明,衣宝廉

期刊论文

电动自行车用锌空气动力电池

朱梅,徐献芝,杨基明

期刊论文